Search results for " 35B27"
showing 2 items of 2 documents
Derivation of a Homogenized Two-Temperature Model from the Heat Equation
2014
This work studies the heat equation in a two-phase material with spherical inclusions. Under some appropriate scaling on the size, volume fraction and heat capacity of the inclusions, we derive a coupled system of partial differential equations governing the evolution of the temperature of each phase at a macroscopic level of description. The coupling terms describing the exchange of heat between the phases are obtained by using homogenization techniques originating from [D. Cioranescu, F. Murat: Coll\`ege de France Seminar vol. 2. (Paris 1979-1980) Res. Notes in Math. vol. 60, pp. 98-138. Pitman, Boston, London, 1982.]
The Mean-Field Limit for Solid Particles in a Navier-Stokes Flow
2008
We propose a mathematical derivation of Brinkman's force for a cloud of particles immersed in an incompressible viscous fluid. Specifically, we consider the Stokes or steady Navier-Stokes equations in a bounded domain Omega subset of R-3 for the velocity field u of an incompressible fluid with kinematic viscosity v and density 1. Brinkman's force consists of a source term 6 pi rvj where j is the current density of the particles, and of a friction term 6 pi vpu where rho is the number density of particles. These additional terms in the motion equation for the fluid are obtained from the Stokes or steady Navier-Stokes equations set in Omega minus the disjoint union of N balls of radius epsilo…